Inteligencia Artificial en Educación: Crecimiento Exponencial, Tendencias Críticas y Desafíos Éticos en la Transformación del Aprendizaje
DOI:
https://doi.org/10.64492/g047yp16Palabras clave:
aprendizaje personalizado, bibliometría, educación, innovación educativa, inteligencia artificialResumen
Introducción: La inteligencia artificial (IA) ha adquirido un papel protagónico en el ámbito educativo, generando transformaciones significativas en los procesos de enseñanza y aprendizaje. Este crecimiento ha impulsado una producción científica creciente que requiere ser sistematizada y analizada para comprender su evolución, enfoques dominantes y dinámicas de colaboración. Objetivo: Analizar la producción científica sobre el impacto de la inteligencia artificial en la educación indexada en la base de datos Scopus durante el período 2022–2024, identificando tendencias, patrones de colaboración y focos temáticos predominantes. Metodología: Se desarrolló un estudio bibliométrico utilizando el lenguaje de programación R y la herramienta Bibliometrix. La cadena de búsqueda incluyó términos relacionados con “inteligencia artificial” y “educación”. Se aplicaron criterios de inclusión basados en la pertinencia temática y el rango temporal. Del total inicial de 1,968 registros, se seleccionaron 33 estudios para el análisis final. Los indicadores examinados incluyeron producción científica anual, aplicación de la ley de Bradford y redes de cooperación académica a nivel mundial. Resultados: Los hallazgos evidencian que 2024 concentró la mayor producción científica, lo que confirma un interés creciente por la intersección entre IA y educación. Asimismo, se identificaron patrones relevantes de colaboración internacional y núcleos temáticos centrados en personalización del aprendizaje, innovación pedagógica y transformación digital. Conclusiones: La inteligencia artificial se consolida como un factor transformador en la educación, al favorecer entornos de aprendizaje más personalizados y accesibles. No obstante, persisten desafíos éticos, técnicos y operativos que deben abordarse para garantizar una implementación eficaz, responsable y sostenible.
Referencias
Al Shloul, T., Mazhar, T., Abbas, Q., Iqbal, M., Ghadi, Y. Y., Shahzad, T., Mallek, F., & Hamam, H. (2024). Role of activity-based learning and ChatGPT on students’ performance in education. Computers and Education: Artificial Intelligence, 6, 100219. https://doi.org/10.1016/j.caeai.2024.100219
Albayati, H. (2024). Investigating undergraduate students’ perceptions and awareness of using ChatGPT as a regular assistance tool: A user acceptance perspective study. Computers and Education: Artificial Intelligence, 6, 100203. https://doi.org/10.1016/j.caeai.2024.100203
Alfredo, R., Echeverria, V., Jin, Y., Yan, L., Swiecki, Z., Gašević, D., & Martinez-Maldonado, R. (2024). Human-centred learning analytics and AI in education: A systematic literature review. Computers and Education: Artificial Intelligence, 6, 100215. https://doi.org/10.1016/j.caeai.2024.100215
Al-khresheh, M. H. (2024). Bridging technology and pedagogy from a global lens: Teachers’ perspectives on integrating ChatGPT in English language teaching. En Computers and Education: Artificial Intelligence, 6. Elsevier B.V. https://doi.org/10.1016/j.caeai.2024.100218
Aslan, S., Durham, L. M., Alyuz, N., Okur, E., Sharma, S., Savur, C., & Nachman, L. (2024). Immersive multi-modal pedagogical conversational artificial intelligence for early childhood education: An exploratory case study in the wild. Computers and Education: Artificial Intelligence, 6, 100220. https://doi.org/10.1016/j.caeai.2024.100220
Boehme, R., Coors, S., Oster, P., Munser-Kiefer, M., & Hilbert, S. (2024). Machine learning for spelling acquisition: How accurate is the prediction of specific spelling errors in German primary school students? Computers and Education: Artificial Intelligence, 6, 100233. https://doi.org/10.1016/j.caeai.2024.100233
Bressane, A., Zwirn, D., Essiptchouk, A., Saraiva, A. C. V., Carvalho, F. L. de C., Formiga, J. K. S., Medeiros, L. C. de C., & Negri, R. G. (2024). Understanding the role of study strategies and learning disabilities on student academic performance to enhance educational approaches: A proposal using artificial intelligence. Computers and Education: Artificial Intelligence, 6, 100196. https://doi.org/10.1016/j.caeai.2023.100196
Chen, L., Ifenthaler, D., Yau, J. Y.-K., & Sun, W. (2024). Artificial intelligence in entrepreneurship education: A scoping review. En Education and Training (Vol. 66, Número 6, pp. 589-608). Emerald Publishing. https://doi.org/10.1108/ET-05-2023-0169
Chiu, T. K. F. (2024). Erratum to “Future research recommendations for transforming higher education with generative AI” [Computers and Education: Artificial Intelligence 6 (June 2024) 100197]. Computers and Education: Artificial Intelligence, 6, 100239. https://doi.org/10.1016/j.caeai.2024.100239
Collie, R. J., & Martin, A. J. (2024). Teachers’ motivation and engagement to harness generative AI for teaching and learning: The role of contextual, occupational, and background factors. Computers and Education: Artificial Intelligence, 6, 100224. https://doi.org/10.1016/j.caeai.2024.100224
Du, J., & Daniel, B. K. (2024). Transforming language education: A systematic review of AI- powered chatbots for English as a foreign language speaking practice. Computers and Education: Artificial Intelligence, 6, 100230. https://doi.org/10.1016/j.caeai.2024.100230
Einarsson, H., Lund, S. H., & Jónsdóttir, A. H. (2024). Application of ChatGPT for automated problem reframing across academic domains. Computers and Education: Artificial Intelligence, 6, 100194. https://doi.org/10.1016/j.caeai.2023.100194
Essel, H. B., Vlachopoulos, D., Essuman, A. B., & Amankwa, J. O. (2024). ChatGPT effects on cognitive skills of undergraduate students: Receiving instant responses from AI-based conversational large language models (LLMs). Computers and Education: Artificial Intelligence, 6, 100198. https://doi.org/10.1016/j.caeai.2023.100198
Fleckenstein, J., Meyer, J., Jansen, T., Keller, S. D., Köller, O., & Möller, J. (2024). Do teachers spot AI? Evaluating the detectability of AI-generated texts among student essays. Computers and Education: Artificial Intelligence, 6, 100209. https://doi.org/10.1016/j.caeai.2024.100209
Forero-Corba, W., & Bennasar, F. N. (2024). Técnicas y aplicaciones del Machine Learning e Inteligencia Artificial en educación: una revisión sistemática. RIED-Revista Iberoamericana De Educación a Distancia, 27(1). https://www.redalyc.org/journal/3314/331475280017/331475280017.pdf
Gallent-Torres, C., Romero, B. A., Adillón, M. V., & Foltýnek, T. (2024). Inteligencia Artificial en educación: entre riesgos y potencialidades. Praxis educativa, 19. https://doi.org/10.5212/praxeduc.v.19.23760.083
García-Peñalvo, F. J., Llorens-Largo, F., & Vidal, J. (2024). La nueva realidad de la educación ante los avances de la inteligencia artificial generativa. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 9-39. https://doi.org/10.5944/ried.27.1.37716
Kajiwara, Y., & Kawabata, K. (2024). AI literacy for ethical use of chatbot: Will students accept AI ethics? Computers and Education: Artificial Intelligence, 6, 100251. https://doi.org/10.1016/j.caeai.2024.100251
Kallunki, V., Kinnunen, P., Pyörälä, E., Haarala-Muhonen, A., Katajavuori, N., & Myyry, L. (2024). Navigating the Evolving Landscape of Teaching and Learning: University Faculty and Staff Perceptions of the Artificial Intelligence-Altered Terrain. En Education Sciences (Vol. 14, Número 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/educsci14070727
Karakose, T., Demirkol, M., Aslan, N., Köse, H., & Yirci, R. (2023). A Conversation with ChatGPT about the Impact of the COVID-19 Pandemic on Education: Comparative Review Based on Human–AI Collaboration. En Educational Process: International Journal, 12(3), 7-25. Universitepark. https://doi.org/10.22521/edupij.2023.123.1
Kong, S.-C., Cheung, M.-Y. W., & Tsang, O. (2024). Developing an artificial intelligence literacy framework: Evaluation of a literacy course for senior secondary students using a project- based learning approach. Computers and Education: Artificial Intelligence, 6, 100214. https://doi.org/10.1016/j.caeai.2024.100214
Lee, D., Arnold, M., Srivastava, A., Plastow, K., Strelan, P., Ploeckl, F., Lekkas, D., & Palmer, E. (2024). The impact of generative AI on higher education learning and teaching: A study of educators’ perspectives. Computers and Education: Artificial Intelligence, 6, 100221. https://doi.org/10.1016/j.caeai.2024.100221
Lee, S. J., & Kwon, K. (2024). A systematic review of AI education in K-12 classrooms from 2018 to 2023: Topics, strategies, and learning outcomes. Computers and Education: Artificial Intelligence, 6, 100211. https://doi.org/10.1016/j.caeai.2024.100211
Li, L., Yu, F., & Zhang, E. (2024). A systematic review of learning task design for K-12 AI education: Trends, challenges, and opportunities. Computers and Education: Artificial Intelligence, 6, 100217. https://doi.org/10.1016/j.caeai.2024.100217
Martin, F., Zhuang, M., & Schaefer, D. (2024). Systematic review of research on artificial intelligence in K-12 education (2017–2022). Computers and Education: Artificial Intelligence, 6, 100195. https://doi.org/10.1016/j.caeai.2023.100195
Meyer, J., Jansen, T., Schiller, R., Liebenow, L. W., Steinbach, M., Horbach, A., & Fleckenstein, J. (2024). Using LLMs to bring evidence-based feedback into the classroom: AI-generated feedback increases secondary students’ text revision, motivation, and positive emotions. Computers and Education: Artificial Intelligence, 6, 100199. https://doi.org/10.1016/j.caeai.2023.100199
Niloy, A. C., Bari, M. A., Sultana, J., Chowdhury, R., Raisa, F. M., Islam, A., Mahmud, S., Jahan, I., Sarkar, M., Akter, S., Nishat, N., Afroz, M., Sen, A., Islam, T., Tareq, M. H., & Hossen, M. A. (2024). Why do students use ChatGPT? Answering through a triangulation approach. Computers and Education: Artificial Intelligence, 6, 100208. https://doi.org/10.1016/j.caeai.2024.100208
Pérez, R. A., Sagrado, A. L., González, E. O., & de Bedout, L. F. (2024). Implicaciones filosóficas, éticas y pedagógicas del uso de la Inteligencia Artificial en educación. Digital Education Review, (45), 29-36. https://dialnet.unirioja.es/descarga/articulo/9624296.pdf
Pitso, T. (2023). Post-COVID-19 Higher Learning: Towards Telagogy, A Web-Based Learning Experience. En IAFOR Journal of Education, 11(2), 39-59. https://doi.org/10.22492/ije.11.2.02
Sanusi, I. T., Ayanwale, M. A., & Tolorunleke, A. E. (2024). Investigating pre-service teachers’ artificial intelligence perception from the perspective of planned behavior theory. Computers and Education: Artificial Intelligence, 6, 100202. https://doi.org/10.1016/j.caeai.2024.100202
Song, Y., Weisberg, L. R., Zhang, S., Tian, X., Boyer, K. E., & Israel, M. (2024). A framework for inclusive AI learning design for diverse learners. Computers and Education: Artificial Intelligence, 6, 100212. https://doi.org/10.1016/j.caeai.2024.100212
Stojanov, A., Liu, Q., & Koh, J. H. L. (2024). University students’ self-reported reliance on ChatGPT for learning: A latent profile analysis. Computers and Education: Artificial Intelligence, 6, 100243. https://doi.org/10.1016/j.caeai.2024.100243
Wang, C., Li, Z., & Bonk, C. (2024). Understanding self-directed learning in AI-Assisted writing: A mixed methods study of postsecondary learners. Computers and Education: Artificial Intelligence, 6, 100247. https://doi.org/10.1016/j.caeai.2024.100247
Zhao, L., Xiaofan, W., Heng, L. (2022). Developing Al Literacy for Primary and Middle School Teachers in China. Based on a Structural Equation Modeling Analysis. Sustainability (Switzerland), 14(21). https://doi.org/10.3390/su142114549
Zheng, Y. D., & Stewart, N. (2024). Improving EFL students’ cultural awareness: Reframing moral dilemmatic stories with ChatGPT. Computers and Education: Artificial Intelligence, 6, 100223. https://doi.org/10.1016/j.caeai.2024.100223
Publicado
Número
Sección
Licencia
Derechos de autor 2025 HOMERO

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los artículos publicados en la Revista HOMERO se difunden bajo la Licencia Creative Commons Reconocimiento–NoComercial 4.0 Internacional (CC BY-NC 4.0).
Los autores conservan los derechos de autor y conceden a la revista el derecho de primera publicación.
Se permite copiar, distribuir y adaptar los contenidos, siempre que se reconozca la autoría y la fuente, se indique si se realizaron cambios y no se haga un uso comercial del material.
No se permite la aplicación de restricciones legales o tecnológicas adicionales.
Más información en Creative Commons: https://creativecommons.org/licenses/by-nc/4.0/








